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Abstract: A condition for the successful inter-radar comparison between two radars is the time-
space synchronization in the middle region where the comparison is the most effective. Since the 
radar locates the target volume in reference to the local referent system, it was necessary to convert 
local coordinates to a common “fixed” frame of reference. A geocentric coordinate system (GCS), 
in which the earth is modeled as an oblate spheroid, was chosen as the prime framework with zero 
coordinates at the center of the earth. In the paper it is explicitly described how a set of points at 
equal distance from both radars was derived. 
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Introduction 

The Minister of Environment Canada announced in January 2012 that the 
Meteorological Service of Canada’s (MSC) weather radar network will receive 
$45.2 million for improved performance and upgrading to next-generation 
technology. With upgrades to the existing radar network, it is required to 
determine the consistency of our adjacent measurements and spatial coverage.  
A condition for the successful inter-radar comparison between two radars is the 
accurate time-space synchronization in the middle region where the comparison 
is the most effective. 

The current Canadian weather radar network has an average inter-radar spacing 
of approximately 300 km. The long distances imply that an approach is needed 
that fully represents the Earth’s geoid. 

A review of the literature has indicated a number of statistical approaches to 
comparing data in the common radar volume. Here, we present a description of 
the theoretical basis for the geometrical evaluation of a common inter-radar 
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space (CIS) utilizing a common spatial reference to offer a more accurate 
determination of the CIS. 

The reference frame for CIS 

Since the radar locates the target volume in reference to the local reference 
system, it is necessary to convert local coordinates to a common “fixed” frame 
of reference. A geocentric coordinate system (GCS), in which the Earth is 
modeled as an oblate spheroid, was chosen as the prime framework with zero 
coordinates at the center of the Earth. 

Schematic representation of the geometry of the two radars that measure the 
location of a common target at point C , is shown in Figure 1. Geometric 
position vectors of point C from the two radars relative to the locations of radars 
are the pink colored vectors ( CAh  and CBh ). Note that the pink vectors do not 
represent the curving rays of an actual radar beam. The local altitudes above the 
mean sea level are represented by green colored vectors ( hAA  and hBB ). The 
geodetic position vectors given in terms of geographic longitude, latitude, and 
height, of two surface points ( A and B ) of the geoid are shown as red colored 
vectors ( AOA  and BOB ) which  are perpendicular to the local horizons. The 
origins of the vectors ( AO and BO ) vary with latitude, but a more practical 
approach uses the geocentric position vectors of two surface points which are 
given as blue colored vectors (OA and OB ). 

 
Figure 1. The geometric construction of the geocentric position vector of point C (bold black line) 
from the geodetic (red color), geocentric (blue color), and local point vectors (pink color) from two 

locations and altitudes (green color). 
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The position vector of a common target point of two radars relative to the GCS, 

the bold black vector (OC ) in Figure 1, is the composition of the three vectors: 
a position vector from the geocentric origin to the surface of the oblate geoid at 
the geographical latitude and longitude of a radar location, an altitude vector that 
is normal to the oblate spheroid surface at the point of the radar location, which 
represents the height of the radar antenna above mean sea level, and a third 
vector that is a local position vector of the common target point measured from 
the radar. The location of the same target point from two radars in reference to 
the GCS is given as a composition of two sets of the corresponding three 
vectors: CAAAOAOC hh ++=  and CBBBOBOC hh ++= . 

Since the two sets of three vectors describe the position of the same target with 
respect to the Earth centre, equating them results in one vector equation: 

CBBBOBCAAAOA hhhh ++=++   (1) 
Equation 1 results in three scalar equations that we will use to define a target 
point that is equidistant from both radars. 

 
Figure 2. Space rotation of local Cartesian frame reee ˆ,ˆ,ˆ λφ (blue color) around point hP  to get 

the frame zyx eee ˆ,ˆ,ˆ  (green color) with axes parallel to the geocentric frame (red color). 
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To obtain the explicit form of vector OC  as a function of radar polar 
coordinates (radar measured azimuth, elevation, and distance of point C) and 
geographic coordinates, we need to first convert the local position vector 

CAh and CBh from a local spherical coordinate to a rectangular coordinate. 
Second, we need to rotate the local frame to have its axes parallel with the Earth-
fixed coordinate frame, where the yx − plane coincides with the Earth 
equatorial plane. The x  axis is permanently fixed in the direction of the 
Greenwich meridian while the z  axis extends through the North Pole.  

General considerations about all transformations will be done first for a general 
point P  and later will be applied to points A  and B , Figure 2. For clarity and 
further reference to the vectors and its components, all transformations are 
presented graphically and the resulting formulas could be found in literature. 

Converting spherical to rectangular coordinates 

 
Figure 3. The geometry for computations rectangular coordinates of point C 

),,( rhhh CPCPCP λφ  in ( reee ˆ,ˆ,ˆ λφ ) frame from azimuth Pα , elevation Pβ  and distance r . 

Transformation of spherical coordinates of point C  (azimuthα , elevation β  

and distance r ), i.e. components of position vector CPh , to rectangular 
coordinate ( reee ˆ,ˆ,ˆ λφ ) has the form (Figure 3):  
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rhhhh CPCPCPCP ++= λφ    (2) 

φφ αβ erCPh ˆcoscos=     (2a) 

λλ αβ erCPh ˆsincos=     (2b) 

rrh erCP ˆsin β=     (2c) 

Where azimuthα  increases from φê to λê  and elevation β  increases from 

λφ ee ˆ,ˆ plane to rê .  Index h stands for a point at altitude h . For the moment, the 
antenna height will be neglected. 

Next we need to rotate the local frame reee ˆ,ˆ,ˆ λφ to get parallel axes with the 
geocentric OXYZ  frame. 

The space frame rotation 

Space rotation of local Cartesian frame reee ˆ,ˆ,ˆ λφ  (blue color) around point hP to 

get the frame zyx eee ˆ,ˆ,ˆ  with axes parallel to the geocentric frame OXYZ  is 
presented in Figure 2. Details for space rotation of local Cartesian frame around 
point hP  to get the frame with axes parallel to the geocentric frame are shown in 
Figure 4. 

From right side of Figure 4 (a, b, c), unit vectors of local Cartesian frame 
reee ˆ,ˆ,ˆ λφ  have following components in frame parallel to the geocentric frame 

zyx eee ˆ,ˆ,ˆ : 

zPyPPxPP eeee ˆcosˆsinsinˆcossinˆ φλφλφφ −+=  (3a) 

yPxP eee ˆcosˆsinˆ λλλ +−=    (3b) 

zPyPPxPPr eeee ˆsinˆsincosˆcoscosˆ φλφλφ ++=  (3c) 

When we substitute above reee ˆ,ˆ,ˆ λφ  unit vectors in (2), we get position vector of 
point C  in local frame with axes parallel to the geocentric frame: 
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( ) xPPPPPPPPPPxh erCP ˆcoscossinsinsincoscossincoscos λφβλαβλφαβ +−=
                … (4a) 

( ) yPPPPPPPPPPyh erCP ˆsincossincossincossinsincoscos λφβλαβλφαβ ++=
                … (4b) 

( ) zPPPPPzh erCP ˆsinsincoscoscos φβφαβ +−= (4c) 

Altitude vector 

 
Figure 4. Details of space rotation of local Cartesian frame reee ˆ,ˆ,ˆ αβ (blue color) around point 

hP  to get the frame zyx eee ˆ,ˆ,ˆ (green color) with axes parallel to the geocentric frame. Sub 

figures on the right side show the components of unit vectors βê  (a) , αê  (b) , and rê  (c). 
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From geometry shown in Figure 4, we see that the local vertical line (zenith line) 
coincides with rê direction and therefore rê  has a latitude angle Pφ  in respect to 
the Earth equatorial plane ( yx − plane). The longitude angle Pλ  is the same in 
both geodetic and geocentric system of references since the vertical axes are on 
the same line (see left side of Figure 4). 

Next is to get a coordinate of the altitude vector hPP  in local frame with axes 
parallel with the geocentric frame and the origin of axes in point P . Since 

hPP has the same direction as geodetic radius of point P  and the intensity of 

vector hPP  is the height Ah (or altitude, or ellipsoidal height) of point hP  which 
is the local vertical distance between the hP point and the reference ellipsoid.  

( )zyxAh eeehPP ˆsinˆsincosˆcoscos φλφλφ ++=  

Or in explicit vector form for each component when we add the height of the 
radar antenna at location P , PH : 

( ) xPPxh eHhPP ˆcoscos λφ+=    (5a) 

( ) zPAyh eHhPP ˆsincos λφ+=    (5b) 

( ) zPAzh eHhPP ˆsinφ+=    (5c) 

Geocentric coordinates of ellipsoid 

To get geocentric coordinates of point P , blue vector OP  in Figure 1, we have 
to notice that in general the radius vector from geocentric origin O  will not be 
normal to the surface of the oblate spheroid (except at the poles and the equator). 
Therefore, we will have two latitudes, geodetic (angle Pφ ) and geocentric 
latitude (angle '

Pφ ), see Figure 5. 
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Figure 5. Geodetic ( '' ZOX p ) and geocentric ( XOZ ) coordinate frames. 

Appendix 1 gives details how to derive position vectorOP : 

( )[ ]zPyPPxPP

P

eeee
e

aOP ˆsin1ˆsincosˆcoscos
sin1

2

22
φλφλφ

φ
−++

−
= (6) 

Where a is the Earth equatorial radius and e  is eccentricity (see Appendix 1). 

Position vector of a target point in geocentric coordinate frame 

From Figure 1, position vector of a target point C determined from local frame 
of reference in point hP  is given by: 

CPOPCPPPOPOC hhhh +=++=  
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The first two vectors in the middle section of the equation are constant and 
depend on the geographical coordinate of surface point hP . Only the last vector 
in the equation depends on the local coordinates of point C.  

If we substitute all vector components from previous sections, (4a,b,c) , (5a,b,c), 
and (6),  we are getting the explicit form of position vector and its components 
of target point C. 

( )[ ] xPPPPPPPPPPhxx erOPOC ˆcoscossinsinsincoscossincoscos λφβλαβλφαβ +−+=  
                        (7a) 

( )[ ] yPPPPPPPPPPhyy erOPOC ˆsincossincossincossinsincoscos λφβλαβλφαβ +++=

                        (7b) 

( )[ ] zPPPPPhzz erOPOC ˆsinsincoscoscos φβφαβ +−+= (7c) 
Where local parameters are given by:  

PPP

P

hx h
e

aOP λφ
φ
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sin1 22 ⎟

⎟

⎠

⎞

⎜
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⎝

⎛
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−
=   (8a) 
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hy h
e
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φ
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sin1 22 ⎟

⎟
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⎞

⎜
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=   (8b) 
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PP
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hz h
e

eaOP φ
φ

sin
sin1

1
22

2

⎟
⎟

⎠

⎞

⎜
⎜

⎝
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+

−

−
=   (8c)  

Mathematical equations of CIS 

Equation 7 shows how vector components of position vector OC  are composed 
from vectors that are related to point P . Identical equations may be derived for 
points A and B . Since the position of point C in geocentric frame is the same 
no matter from which starting point the position vector is constructed, it must 
satisfy the condition that vector components are equal. From that condition we 
get three scalar equations after substituting (7a,b,c) with points A and B in  (1): 

( ) =+−+ AAAAAAAAAAhx rOA λφβλβαλφβα coscossinsincossincossincoscos  



J. Geogr. Inst. Cvijic. 63(4) (11-28) 

 20

( )BBBBBBBBBBhx rOB λφβλβαλφβα coscossinsincossincossincoscos +−+
                        (9a) 

( ) =+++ AAAAAAAAAAhy rOA λφβλβαλφβα sincossincoscossinsinsincoscos
( )BBBBBBBBBBhy rOB λφβλβαλφβα sincossincoscossinsinsincoscos +++

                        (9b) 
( ) =−+ AAAAAhz rOA φβαφβ coscoscossinsin  

                  ( )BBBBBhz rOB φβαφβ coscoscossinsin −+              (9c) 

All geographical parameters are assumed to be known; only 6 local spherical 
coordinates are unknown. And because they are coupled with three Equations 
(9a,b,c) we have only 3 independent variables, spherical coordinates from one of 
two local frames. Since we are analyzing a specific case when point C is at same 

distance from both local frames: rCBCA hh == , we have an additional 

reduction of degrees of freedom, from 3 to 2.  

Specifying the directions AA βα ,  from point A gives the remaining two 
equations. Solving Equations 9a,b,c we can find the other three dependent  
coordinates: BBr βα ,, .  

After evaluation of the above equations we get: 

          
( )( ) ( )( )

( )[ ] ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−+

−−−±−−−
±= 22

22

2
42

arccos
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adcdbbcdacb
Bα  (10) 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
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⎡

−
+−−−

=
3223

3232cos11331cos
arctan

2

MLML
MILJMLML BB

B

αα
β  (11) 

                      ( ) ( )AABBB

hzhz

KKK
OBOAr

βααββ ,32cos1tancos −−
−

=   (12) 

Explicit forms of constants and parameters for chosen locations A and B  for 
AA βα ,  values are given in Appendix 2.  

Since for each pair of AA βα , values, there is at most one ray from radar B  
( BB βα , ) that meets it with equal distances ( r ) from both radars, multiple 
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solutions in (10) because of ± signs are prohibited. Therefore, procedures for 
obtaining BBr βα ,, from Equations (10, 11, and 12) must use filters, and 
restrictions, that will reject all solutions except the physical one.  

Analyze 

Theoretical CIS formulas (10, 11, 12) obtained in the previous section enclose 
three main CIS characteristics: the size, direction and slope of CIS. Visual 
presentation of these characteristic is given in the next three subsections.  

Position vector of a target point in geocentric coordinate frame 

 
Figure 6. Graphical presentation of calculated equal-distance ( )AAr βα ,  as a function of 

azimuth and elevation of WKR radar for an angle resolution of o1 . 

As an example of CIS calculation, the WKR (King City, lat=43.96, lon= -79.57, 
alt=360m) and WSO (Exeter, lat=43.37, lon= -81.38, alt=303m) radars were 
used. 

The graphical presentation of ( )AAr βα ,  for WKR and WSO is shown in Figure 
6 for o1  angle resolutions.  

As we expected the equal-distance is symmetrical in regards to the vertical plane 
in WKR-WSO direction and the number of equidistant points decreases with the 
elevation angle. The shape of ( )AAr βα ,  doesn’t change with angle resolutions, 
only the density of points is changing. 
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More practical presentation of CIS is in the local Descartes reference system as 
it is shown in Figure 7 for two angle resolutions, o1  (a) and o1.0 (b). The shape 
of the CIS is more like a wall as the angle resolution increases.  

 

 
 

Figure 7. Graphical presentation of calculated CIS in the local WKR radar Descartes reference 

system ( )yxZ ,  for angle resolutions o1  (a) and o1.0 (b). 

The size of CIS depends on the geographical positions of two radar locations, 
mostly of their relative distances as it was shown in Figure 8. Three colors (red, 
black, and blue) were marked three different radar distances ( 321 ,, xxx ). For the 
third case (blue) was sketched CIS length ( L ) and height ( H ) for a chosen 
maximal radar range ( d ) and troposphere height ( maxH ). 

 
Figure 8. Sketch of the horizontal (a) and vertical (b) cross section of relative positions of radar 
locations and the CIS plane of symmetry for the maximal radar range d and troposphere height 

maxH . The size of CIS, length L and height H , depends on relative distance x of pair of radars. 
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CIS direction 
Figure 9 shows how equal-distances are changing with elevation in WKR-

WSO direction for angle resolutions 
o1  (a) and 

o1.0 (b).  With higher angle 
resolution there is a more precise determination of the WKR-WSO direction, 

o246  versus
o3.246 . 

 
 

Figure 9. Graphical presentation of calculated CIS distance in WKR-WSO radar direction as a 

function of WKR elevation, ( )ABA
r βα −

,  for angle resolutions o1  (a) and o1.0 (b). 

CIS slope 

 
 

Figure 10. The schematic cross section of position of the plane of symmetry that includes equal-
distances between A and B radars where the local verticals are tilted for Aδ and Bδ  angles for a 

similar (a) and a significant altitude difference (b). 
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The collection of points at equal-distance from two radars belongs to the plane 
of symmetry as it were sketched in Figure 10. In the local reference systems the 
plane of symmetry is tilted for  Aδ  and Bδ . The tilted angles Aδ  and Bδ  are 
comparable when both radars are at similar altitudes (a), while as the difference 
in altitude between radars increases, the difference between tilted angles also 
increases (b). The amount of CIS tilt is a function of radar’s distance and altitude 
differences, i.e. geographical coordinates. 

Discussion and summary 

The presented study is an attempt to clarify the geometry of defining the 
common inter-radar space. The essence of the methodology is presumption that 
if we want to compare measurements from two radars we need to first establish 
accurate coordinates of a common target volume. Since the radar locates the 
target volume in reference to the local reference system, it is necessary to 
convert local coordinates into a common geocentric “fixed” frame of reference.  

As it was shown, for two radars A and B, from vector equation of position 
components of a common target point C, we can calculate coordinates of points 
that are in equal distance from both radars. As a result, for each pair of 
independent coordinates AA βα , , of point C at equal distance from both radars, 
the radius distance r  is determined by equation: 

( ) ( )AABBB

hzhz

KKK
OBOA

r
βααββ ,32cos1tancos −−

−
=  

Furthermore, for same pair of independent variables AA βα ,  , measured by 
radar at location A, there are coordinates BB βα ,  ( r  is the same) of radar at 
location B that point to the same target C given by: 

( )( ) ( )( )
( )[ ] ⎥
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⎢
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⎡
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⎥
⎦

⎤
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⎢
⎣
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2
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B
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Where explicit forms of constants and parameters are given in Appendix 2. 

In the presented work we have shown how to determine the CIS and from pure 
geometrical perspective the CIS is not a simple rectangle wall with constant 
dimensions. The size, direction and slope of the CIS vary with geographical 
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locations of radars and also with maximal range of the radars. The derived 
formulas will be a complete and accurate method for comparison that can be 
used with the large inter-radar distances of the Canadian network. Obtained 
formulas are very accurate but not yet operationally suitable since they 
determine the mathematical points of equal distance not the common radar pulse 
volumes from operational discrete scanning angles. Therefore, the next steps 
should be the inclusion of the technical characteristics of the radars in the 
operational regime and the conversion between the geometric elevation and the 
antenna axis elevation. 
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Appendix 1. 

To get coordinates of OP  vector in the geocentric frame we need first to find the line equation of 

line )(xfP that have PO  and P  points, in the fixed XOZ reference system, Figure 5. We will 

do it using condition that the tangent on geodetic ellipse is perpendicular to the )(xfP line. Since 

value POP  is the same for any longitude (meridian), for simplicity we can chose zero longitude 
for our calculations (Grinch meridian). 

PPPPP OOxkxmxf +=+= φtan)(   (A1) 
To find Pk , i.e. POO , we will use condition that both equations (A1) and equation of ellipse 
(shown below in canonical form) must be satisfied. 

12

2

2

2

=+
b
z

a
x      (A2) 

where a>b>0 and ax ≤ . Applying derivation on the equation of ellipse we get: 

022
22 =+

dx
dz

b
z

a
x

 →  
2

2

za
xb

dx
dz

−= ,  which for point P has specific value: 
2

2

az
bx

dx
dz

P

P

P

−= . 
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Using trigonometry definition of tan in Fig 5, we have relation between geocentric coordinate of 

point P  and radial angle '
Pφ : 

p

p
P x

z
='tanφ      (A3) 

 Substituting above equation for first derivation of ellipsoid equation in point P : 

2'

2

2

2

2

2

tan a
b

a
x
z

b
az
bx

dx
dz

P

P

PP

P

P φ
−=−=−= . This tangent is perpendicular to the ellipsoid and 

also to the circle that has radius in point P   that crossing ordinate Z  at point PO : 

'
2

2

2'

2 tan

tan

11tan P

PP

P b
a

a
b

dx
dz

φ

φ

φ =
−

−=−=  →  PP a
b φφ tantan 2

2
' = . 

Instead using equatorial radius ma 0.1373786= and polar radius mb 3142.7523566=  we can 

use eccentricity squared 379694006.02 =e . From definition of eccentricity:   
2

2
2 1

a
be −= ,  

we get  2
2

2

1 e
a
b

−= which substituted in previous 'tan Pφ equation gives final relation between 

geodetic latitude Pφ  and geocentric latitude '
Pφ : 

PP e φφ tan)1(tan 2' −=     (A4) 
Four Equations (A1, A2, A3, A4) are sufficient to obtain the rest of four unknown 

( PPPP OOzx ,,, 'φ ) as a function of geodetic latitude Pφ . 

P

P
p

e
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φ
22 sin1
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=             (A5) 

         ( )
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22
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−
=    (A6) 

         
P
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e
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φ
22

2

sin1

sin

−
= m    (A7) 

Where negative sine is for north hemisphere and positive for south hemisphere.   
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For three dimensional case Z  coordinate is the same while px coordinate should be decomposed 

to x and y components as   px  projection on x  and y axes. If longitude angle for point P  is 

pλ (Figure 4, left side) than we have following equations:  

P

P

P
p

e
ax λ

φ

φ cos
sin1

cos
22−

=    (A8) 

P

P

P
p

e
ay λ

φ

φ sin
sin1

cos
22−

=    (A9) 

Or in concise vector form: 

( )[ ]zPyPPxPP

P
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e
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2
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φ
−++

−
= (A10) 

 
Appendix 2. 

Explicit forms of parameters and constants for chosen locations A and B for AA βα , values are 
given in logical order: 
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BBI λφ cossin1= , BI λsin2 = , BBI λφ coscos3 =   

AAAAAAAAAAI λφβλβαλφβα coscossinsincossincossincoscos4 +−=  
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BBJ λφ sinsin1= , BJ λcos2 = , BBJ λφ sincos3 =  

AAAAAAAAAAJ λφβλβαλφβα sincossincoscossinsinsincoscos4 ++=  

BK φsin1= , BK φcos2 = , AAAAAK φβαφβ coscoscossinsin3 −=  


